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ABSTRACT 

Moore’s law has been the guiding principle for 
performance and transistor density improvements over the 
years. While this is true, in the context of network 
processor development, the challenge is multi-faceted to 
keep the silicon development on the curve. 

This paper describes the challenges for a network 
processor implementation in each facet of design. The 
network processor designs adopted the following 
implementation techniques to manage the design 
challenges and the Time-to-Market (TTM) schedule: 

• Reuse of Intellectual Property (IP).  

• Extensive functional validation. 

• High-performance clock architecture and design. 

• Streamlined hierarchical physical design flow. 

• Efficient and cycle-accurate c-model for 
performance simulation. 

A case study of implementation on the IXP2400 design is 
presented with the above strategies in detail. 

The silicon results show that the IXP2400 is a successful 
design following the stated methods.  

INTRODUCTION 
Network processors are the emerging class of chips that 
offer Original Equipment Manufacturers’ (OEM) flexibility 
in creating a wide range of applications. They are targeted 
to replace expensive and inflexible fixed-function silicon 
Application-Specific Integrated Circuits (ASIC). The 
implementation of network processors has to form-fit to 
the schedule needs of a telecommunication industry 

moving at the Internet speed. At Intel, we chose the 
architectural approach of providing a highly integrated 
and highly programmable solution to customers. This 
means a lot of functionality is packed into the silicon, 
thereby increasing its complexity for implementation. In 
addition to the functionality, the network processor has to 
operate at the targeted line rates, often running multiple 
tasks as demanded by the end-user applications. The 
applications may range from basic L3 forwarding to 
sophisticated algorithms that are more compute-intensive, 
as in the case of creating firewalls and intrusion detection 
services.  

Network processors interface to a host of devices to 
perform their functions: media/switch fabric, PCI for 
control interface, DRAM for packet storage, Quad Data 
Rate (QDR) as a fast memory for queues and table lookup, 
and miscellaneous device support including Universal 
Asynchronous Receiver/Transmitter (UART) and General 
Purpose Input/Output (GPIO). A number of parallel 
microengines work on the data packets executing a 
specific microcode sequence downloaded into their 
memories by the control processor. The microengines, the 
control units, and I/O interfaces are connected via an 
internal chassis bus, and data movement happens in an 
efficient manner through arbitration schemes. This is akin 
to a system-on-chip design. 
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Figure 1: Constantly increasing processing power is 
required even as the market requires shorter design 

cycles and time-to-market 

A number of challenges for implementation are already 
evident. As the demand for performance scales up (Figure 
1), the number of transistors increases with collateral 
increases in power and physical design complexity. As an 
example, the IXP2400 design on p859 packs ~60 million 
transistors, which is comparable to a high-performance 
IA32 processor.  Further, to meet the performance goals, 
the critical processing elements such as the microengines 
and the XScale™ control processor are working at the 
highest clock rate possible (600MHz in IXP2400). The 
high-frequency operation requires custom design of 
Arithmetic and Logic Unit (ALU) and memory elements. 

Given the varied usage models in the field, extended 
temperature range (-40deg.C to 85deg.C) is a Plan Of 
Record (POR) for network processor implementation at 
Intel. The power requirements are also stringent, with 
applications ranging from fully enclosed boxes, as in 
cellular base stations, to heat-sink solutions on high-
performance blades (line cards) in a rack system. These 
requirements pose a significant challenge for reliability 
and robustness of the design. 

Since network processors have to interface to a lot of I/Os, 
the result is complexity of package, I/O design, and board 
design. The requirements on design may be more stringent 
here in network processors than on a CPU, due to the 
proprietary nature of designs from OEMs.  

Functional verification of a network processor is also a 
very challenging task due to the fact that it has several 
interfaces (PCI, DRAM, QDR, slowport, media, switch 
fabric, etc.) and supports several network protocols. 
Several on-chip clock domains, both synchronous and 
asynchronous, make the task even more complicated. 

One of the essential deliverables of a network processor 
design project is a simulator that models the functionality 
of the network processor with execution-cycle-level 
accuracy. To external customers and internal software 
teams, this simulator enables application software 
development and performance optimization long before 
the network processor product becomes available in 
silicon. To the internal design team, this simulator 
facilitates conducting performance analysis and 
architecture/microarchitecture studies. The unique nature 
of network processors poses significant challenges and 
imposes special requirements on the development of such 
a simulator. The requirements for the simulator are best 
illustrated by reviewing the architecture of network 
processors and the complexity and paradigm of the 
application development. The simulator must minimize the 
application development complexity. Furthermore, due to 
lack of network processor performance benchmarks, the 
simulator and reference applications must become 
available at least three quarters before silicon sample date. 
This schedule enables the potential customers to evaluate 
the capability of the network processor effectively, and 
facilitates the committed customers to gain time-to-market 
advantage by starting application development early. It 
helps Intel to engage the customers with an architecture 
before the silicon is available. 

In a competitive environment of network processor silicon 
solutions, Time-to-Market (TTM) becomes a compelling 
factor for Original Equipment Manufacturers (OEMs) in 
picking an architecture for product design. For silicon 
providers, as the performance demand is increasing and 
the transistor count is thereby increasing, the RTL to 
GDS2 design cycle times are staying flat. One way to form-
fit the complexity of design into the same schedule is by 
increasing the size of design teams. Studies show that this 
leads to inefficiencies and increased cost of product 
development beyond a point.  

In response to these challenges, the network processor 
design teams at Intel have focused on increasing 
productivity and efficiency in design through reuse, co-
development, innovative methodologies, and streamlined 
tool flows.   

The following sections describe IXP2400 as a case study, 
going into the details of each phase of the network 
processor design from RTL to GDS2. 

XScale™ is a trademark of Intel Corporation or its 
subsidiaries in the United States and other countries. 
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IXP2400 DESIGN: A CASE STUDY                    

Reuse 
The strategy for front-end RTL development was co-
development with IXP2800 and reuse of design modules 
from an Intellectual Property (IP) repository.  The design 
modules for RTL coding were partitioned between 
IXP2400 and IXP2800 at the beginning of the project 
execution.  The originating project that developed a 
functional block assigned primary logic owners who are 
completely responsible for functional correctness. The 
receiving project assigned secondary owners who are 
responsible for physical implementation at their end. This 
co-development was managed well through good 
interaction at engineering-peer-to-engineering-peer level 
and between management at the schedule level. Project-
specific sub-modules were clearly identified (e.g., reset 
module). For these sub-modules, a common interface was 
worked out ahead of time to make it an easily swappable 
block of code. The least common denomination of memory 
elements in size and usage was also worked out in this 
manner. High-performance custom datapath blocks in the 
microengine were isolated from synthesizable blocks with 
clear interface partitioning to allow parallel development. It 
is to be noted here that the IXP2400 and IXP2800 have 
different process and performance goals. Therefore, the 
sharing is limited to RTL code. 

A number of other functional blocks and sub-blocks have 
been reused from an IP repository. These include the PCI 
core, Universal Asynchronous Receiver/Transmitter 
(UART), XScale™ core (Elkhart) and Double Data Rate 
(DDR) I/O as shown in Figure 2.  

Several IP were harvested for the physical implementation 
for reuse. For the I/O design, good inventory of IP was 
available from chipset groups for DDR I/O and a basic I/O 
buffer design for all the others: Media Switch Fabric 
(MSF), PCI, and miscellaneous I/O. Quad Data Rate (QDR) 
I/O was generated by modifying the DDR I/O design. 
Much of the I/O effort then was focused on integrating 
the I/O blocks for the chip floorplan and for doing signal 
integrity checks for the board reference designs. 

The analog high-frequency Phase Locked Loop (PLL) 
design was imported from the chipset group and tuned 
extensively to IXP2400 requirements. 

The basic cells for the SRAM memory elements and the 
SRAM architecture were reused from a CPU group. This 
cut down the development time to two quarters. 

 

Figure 2: The IXP2400 design is a mix of reuse and co-
development 

Functional Verification  
This section describes some of the methodologies the 
team adopted to successfully complete verification of the 
IXP2400 network processor.  

Verification of the IXP2400 started with choosing the right 
tools and verification platform, and defining the 
verification methodology. The team evaluated several 
alternatives and chose Cadence’s* NCSIM for logic 
simulator, Verisity’s* SPECMAN for test bench 
automation, X86 Linux platforms for computing servers, 
Debussy* waveform viewer for debug, and Denali* 
memory models. A clear methodology was defined and 
documented with two main goals :  

1) The primary goal was to make sure that A0 
silicon had adequate functionality that enabled 
the team to build a system-level environment and 
run software.  

2) The secondary goal was to enable customer 
sampling on the A-dash stepping.  

An extensive upfront methodology was documented with 
various milestones and exit criteria for each of these 
milestones. This methodology document defined the rules 
and guidelines to be followed while developing the 
verification components to make them extendable, 
expandable, and readily usable as an IP by another project.  
IXP2400 and IXP2800 projects used this methodology and 
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seamlessly shared the verification components.  Figure 3 shows the validation view of the Sausalito architecture.   
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Figure 3: Validation view of IXP2400 architecture

Following are some of the salient features of the IXP2400 
verification methodology. 

1. Testing design at multiple levels of integration, 
namely, block level, full-chip, and system levels: 
System level simulation puts together an IXP2400 
full-chip RTL model with the ecosystem 
surrounding the chip in some real-life 
applications. The intent of system-level 
simulation is to make sure that the chip is 
compatible with ECO system components such 
as framers, and compliant with industry standard 
protocols such as UTOPIA and POS-PHY.  

2. Monitor-Based Testing (MBT): The real power of 
SPECMAN lies in its built-in random generator, 
and this power is used during test plan 
implementation. Tests are developed in a three-
phase approach. In phase 1, simple, directed tests 
are written to cover the breadth of design. In the 
second phase, the random power of SPECMAN 
is unleashed to generate interesting test cases. 
For each of the test cases in the test plan, 
monitors are written to make sure that the test 
case is covered. Hence, all the test cases whose 
monitors got triggered during this random run are 
checked off. The coverage report is analyzed to 
identify the test cases that are not covered. 
These uncovered test cases are the focus of the 
third phase, in which directed tests are written to 
cover them. 

3. Random testing: To increase confidence in the 
model, SPECMAN’s random generator was put to 
use. A concurrent random test environment was 

built to generate random transactions on a bus 
with multiple masters and slaves. This 
environment is highly configurable to choose 
specific master(s), slave(s), and type(s) of 
transactions.   

4. Gate-level verification: This was used to weed 
out initialization deficiencies and synthesis bugs. 

5. Error checking that uses three methods: 1) 
extensive score-boarding techniques were used 
in packet generators; shadow memory techniques 
were used for memory data checks during and at 
the end of each test, 2) for microengine 
verification, a reference model was written in C 
and was used to validate the RTL model, and 3) 
protocol checkers were used to verify the 
behavior of the design for compliance with 
certain protocols.  

6. Structural and functional coverage monitoring 
techniques. 

7. Automation scripts and web-based regression 
methodology: these used netbatch tools to 
balance and distribute jobs across multiple 
servers.  

8. Complete debug: the verification team took a goal 
to debug the RTL failures in order to determine 
the root cause. In several cases, the team not 
only root-caused the failure but also identified 
the fix. This enabled the team to gain extensive 
knowledge of the design, which helped during 
later stages of per-silicon debug and also helping 
post-silicon debug. 
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9. Rigorous quality and progress measurement 
indicators: various indicators were developed to 
measure the quality and progress. The two kinds 
of indicators used were 1) trend and 2) snapshot. 
Trends were useful for determining progress 
against the plan over several weeks. Snapshots 
were used to get the status at a single point in 
time and were used to point out problems in a 
specific block or area of testing. 

XScale™ is a trademark of Intel Corporation or its 
subsidiaries in the United States and other countries. 

*Other brands and names are the property of their 
respective owners. 

 

IXP2400 CLOCK ARCHITECTURE 
OVERVIEW  
To support operations of various memory interfaces, 
communication interfaces, and internal computing 
hardware, IXP2400 has 16 clock domains, not to include 
various test clocks. The highest clock rate is used by a 
microengine and the on-die XScale™ core, up to 720MHz, 
to generate high-computing performance for packet 
processing. The global communication buses for major 
internal hardware units operate up to 360MHz. To assist 
sending and receiving data to external memory devices, 
including both DRAMs and SRAMs, 1X, 2X and 4X 
clocks are generated for the memory device controller and 
IO devices. IXP2400 also has four independent media 
interface clock regions, operating from 25MHz to 125MHz. 
The clock rates for communication interfaces and memo ry 
interfaces are all programmed through control registers. 
For boot up and host processor communications, IXP2400 
has PCI and slow port interfaces running up to 66MHz and 
60MHz, respectively. 

To support all these clock domains, IXP2400 has a total of 
5 Phase Locked Loops (PLLs). Four of them are for 
generating independent asynchronous clocks for the four 
media communication interfaces, and the remaining one is 
for generating all internal clocks for packet processing and 
all memory interfaces (Figure 4).  With various clock 
domains, data crossing is done through extensive use of a 
stepping stone control scheme to ensure safe data 
crossing, in the presence of higher clock skew between 
different clock domains. Stepping stone control is also 
enforced in test mo de between clock domains that are 
normally asynchronous in nature. 

The clocking in IXP2400 has numerous features to support 
testing and debug. A debug counter that counts up to 67 
million cycles is incorporated to support a count-down 
and clock-stopping function, so that the device can stop 
at a particular cycle and SCAN out of internal states can 
begin. The clock distribution system supports bypassing 
of external SYS_CLK, SCAN clocks, and JTAG clock. 

IXP2400 Clock Design 
The IXP2400 clock design can be grouped into two parts:  
the clock generation and the clock distribution. 

The clock generation consists of a PLL and a clock 
divider.  The PLL is a leveraged IP that we adapted to fit 
into the IXP2400 area constraint.  The divider was custom 
built by the IXP2400 team to meet the more stringent 
requirement of low latency by the IXP2400 chip.  Lower 
latency means lower full-chip clock skew.  The reduction 
of the full-chip clock skew from the divider is estimated at 
60ps.  To design a fast divider, non-critical paths were 
carefully designed to still meet their timing yet, more 
importantly, have minimum impact on or even help speed 
up critical paths.  Logics were combined innovatively and 
carefully optimized using custom techniques. As a result, 
the divider clocks are generated after just one latch delay 
from receiving the source clock. 

 

 

Figure 4: The IXP 2400 clocking scheme 

Clock balancing within the divider was made more 
challenging; given the quest for low latency, more design 
efforts on balancing were spent after low latency was 
achieved.  Layout was also carefully scrutinized for 
balancing.  A local pre-divide grid was used to reduce RC.  
Delay elements were added to allow further fine-tuning of 
the clocks, if necessary.  The frequency range of the 
clocks on IXP2400 is wide; thus a high-ratio divider was 
designed. An important part of the divider is the error-
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correction circuit, which combats noise and ensures clock 
alignment.  The clock dividers are also programmable. 

The clock network design challenges were evident from 
the beginning.  The number of clocks in a network 
processor chip is high compared with general-purpose 
microprocessors.  In addition, the IXP2400 has a large die 
size; so, inherently, the clock skew would be large if not 
carefully designed. Low power was another consideration.  
Tight schedule was another challenge, and quick turn-
around time was another goal.  These were some of the 
challenges in designing the IXP2400 full-chip clock 
network.   

For low-power consideration, a balance tree clock network 
style was selected.  It uses a fixed route to stabilize RC and 
reduce iteration impact to full-chip layout.  The large 
number of clock drivers is grouped into clock station 
macrocells.  Layouts were done with easy programming in 
mind.  Most of the clock stations were designed to drive a 
fixed load to ease clock tuning.  At the chip level, all 
clocks were routed with shielding.  The full-chip clock 
network RC was extracted and simulated in SPICE.  Scripts 
and automation were developed to quickly tune the clock 
networks once the block-level clock data are in.  
Eventually, towards tape-out, the full-chip clock network 
tuning turn-around time is just one day. At the block level, 
a pre-grid clock scheme was used to reduce clock skew. 
RC extraction data were fed back from the block to the full 
chip for top-level clock tuning.  Block-level-clock tuning 
was automated for smaller blocks and carried out by hand 
for large blocks and I/Os.  SPICE was the primary 
simulation engine for accuracy of the results. Place and 
route blocks were tuned by a clock tree synthesis tool for 
the last two stages of clock networks just before reaching 
the flops.  Clocks lines were plotted and reviewed by the 
clock owner and the individual block designers.  

XScale™ is a trademark of Intel Corporation or its 
subsidiaries in the United States and other countries. 

IXP2400 HIERARCHICAL DESIGN 
METHODOLOGY AND FLOW 
The primary requirement on the design flow is to enable 
short Time-to-Market (TTM). Therefore, it is imperative to 
employ a high level of design automation to increase 
productivity.  We employed the following basic strategies 
to help achieve the TTM goal: 

• Top-down-driven hierarchical design flow. 
• Cell-based methodology. 
• Streamlined custom circuit-design flow. 

 

We began by performing careful floorplanning at the chip 
level to obtain an accurate wire model of major/critical 
signals/busses, block sizes/placements, and location of 
the block-level pins.  A full-chip timing budget was then 
done to allocate timing constraints to the blocks.  The 
block-level constraints were then passed on to the block 
designers, who then performed an initial design and 
provided the feedback to the full-chip designer.   By 
performing upfront planning and getting early bottom-up 
feedback, we reduced the number of iterations needed to 
converge on the final design goals.    

Secondly, through the use of cell-based methodology with 
only static CMOS logic, we were able to take advantage of 
the industry standard Application-Specific Integrated 
Circuits (ASIC) design tools, namely, logic synthesis and 
automatic place and route tools, which offer a relatively 
fast design cycle.  These tools were used on most of the 
blocks, with the exception of the timing critical datapath 
blocks of the microengines, memory arrays, and IO pads.  
In addition, we were careful to ensure that flip-flops were 
used at all block boundaries to minimize inter-block 
interactions. 

The key enabler for achieving high productivity in our 
custom design flow is a tool suite from MicroMagic (now 
part of Juniper* Networks).  Coupled with the cell-based 
design methodology, the tool allowed us to specify the 
relative placements of the cells while composing the 
schematics of the datapath blocks.  The tool automatically 
generates the block layouts with placed cells.  Timing 
analysis is then done with global routings to obtain the 
performance of the physical design.  The placements of 
the cells can then be fine-tuned to improve timing where 
necessary.  Once the timing goal is met, an automatic 
detailed router is used to complete the layout.   In this 
manner, the datapath block layouts were completed with 
less than one-third the amount of effort compared to full 
custom-design methodology.  Likewise, the memory arrays 
were constructed through the use of MicroMagic tools, 
which automatically assemble the array layouts based on a 
set of high-level commands. Furthermore, the command 
scripts were parameterized so that arrays of different sizes 
(within a pre-defined range) could be compiled 
automatically with minimal efforts. 

Last, but not least, the design project was managed using 
a structured design flow with a series of discrete 
milestones.  The flow diagram in Figure 5 depicts the high-
level view of the design flow. 

*Other brands and names are the property of their 
respective owners. 
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Figure 5: The IXP2400 team used this flow to rapidly 

converge on the final implementation while 
maintaining control of the data 

 

IXP2400 Design-for-Test Methodology 
IXP2400 is a complex System on a Chip (SOC) design with 
more than 300 embedded arrays and 88 scan chains 
encompassing 120K flip-flops spanning across 14 different 
clocks running and configurable from 33 to 600MHz.  The 
complexity of the system requires a carefully planned 
Design For Test (DFT) methodology to enable 
manufacturing  and silicon debug.  To achieve high test 
coverage, full-scan design methodology is used 
throughout the entire chip.  Embedded memory arrays are 
tested using either memory built-in self-tests (MemBIST) 
or scan-collars.  In scan-collared arrays, scan flops are 
placed on both the input and output stages and are used 
to control and monitor the arrays.  All of the scan-collared 
arrays are part of the 88 scan chains.  Also, boundary scan 
is implemented on the IO pads to facilitate system-level 
testing. 

To assist in silicon debug, we included a novel scan-
debug feature on the chip.  This feature allows the chip to 
run at full speed from reset and stop at a user-defined 
cycle.  The internal state of the machine, i.e., the content 
of each scanned register, can then be shifted out through 
the scan chains. 

Network Processor Cycle-Accurate Simulator  
This section describes the challenges, the requirements, 
and the successful development strategy and tools that 
the IXP2400 development team employed. 

Architecturally, a network processor consists of clusters 
of packet processors, co-processors with specific 
functions, on-chip memory, various kinds of memory and 

bus interface controllers, and many mechanisms that 
provide fast communication and signaling among these 
hardware elements, and a general-purpose CPU, all on a 
single chip. In the case of IXP2400, the packet processors 
are called microengines. A microengine is a multi-threaded 
processor that excels in processing packets at line rate. 
Each IXP2400 microengine supports up to eight threads of 
execution. Thread switching is controlled by software and 
poses zero cycle penalty. IXP2400 contains integrated 
SRAM and DRAM controllers. Moreover, IXP2400 offers 
hardware acceleration for managing queues and First In 
First Out (FIFO) rings, and supports atomic operations for 
the SRAM and on-chip memory address spaces. 
Furthermore, IXP2400 provides highly flexible network 
media and switch fabric interfaces for receiving and 
transmitting packets. 

From the user’s perspective, application development for 
network processors is an exercise of real-time, multi-
threaded, and multi-processor programming at the same 
time. The performance of the application must ensure that 
the throughput of packet processing exceeds the desired 
line rate so that packets do not get dropped. In order to 
create optimized and efficient applications, developers 
must account for the latency and sequence of all the 
transactions, as well as the interactions among the various 
execution threads and hardware units. As a result, the 
simulator must offer both functional and cycle accuracy. 
Furthermore, the simulator must monitor a rich list of 
performance statistics and all the transactions every clock 
cycle, and must enable the developers to visualize them 
through an effective Graphical User Interface (GUI). 

For the Intel IXP family of network processor products, 
the simulator is called Transactor, and the GUI tool is 
called Workbench. Workbench offers the single GUI for 
code development using assembly or microengine C 
language, for running simulations to debug and 
performance-tune applications, and for debugging with 
the real network processor hardware. 

The complexity of network processors, the requirement of 
100% cycle accuracy, and the fact that external Transactor 
releases begin during the early phase of the project all 
pose significant challenges to the Transactor development 
team. In addition, the team must achieve excellent 
development efficiency and quality. 

The development strategy that the IXP2400 project 
employed is based on an internal tool called VMOD. 
Conceptually, VMOD accepts a logic design at the RTL 
level and generates the corresponding cycle-accurate C++ 
model, i.e., Transactor. Moreover, this C++ model 
supports an API for interfacing Transactor with the 
workbench. This API relays user commands to Transactor 
and facilitates communication of model states, 
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performance statistics, and status of transactions under 
simulation between Transactor and Workbench. 

RTL code presents the functional and cycle-count 
behavior of a logic design to VMOD. However, RTL code 
describes only the low-level hardware and does not 
convey model states at the architecture level. For instance, 
Transactor users operate with architectural registers, but a 
register in RTL may be a group of flip-flops that are 
individually addressed through signal names with long 
hierarchies. In addition, the RTL code of a logic design 
does not include performance statistics and does not 
monitor transactions that execute on top of the hardware 
that the very RTL code models. 

In order to enable Transactor to present architectural 
states and performance statistics to the users, and to track 
all the simulated transactions, VMOD accepts C++ code in 
addition to RTL. This C++ code can read and write 
individual RTL signals and runs in lock-step with the 
simulation of the RTL. During simulation, this C++ code 
collects performance statistics and tracks all the 
transactions by accessing the relevant RTL signals. 
Moreover, when the Transactor user wants to access an 
architectural state, this C++ code translates the mapping 
of the requested architectural state to the actual collection 
of RTL signals that make up the architectural state. 

Within the IXP2400 design team, the Transactor team 
owns the development of the Transactor, and the logic 
design team owns the development of the RTL model. The 
Transactor team develops the C++ code for all the 
architectural states, performance statistics, and tracking of 
transactions. In addition, the Transactor team inputs both 
the C++ code and the RTL of the logic design into VMOD 
for Transactor generation. In addition, to ensure excellent 
quality, the Transactor team builds a thorough regression 
suite for validating Transactor. 

RESULTS 

Reuse 
Reuse has been a tremendous win overall for the IXP 
design program. In particular for IXP2400, it cut down the 
development times for critical elements of design, for 
example, in I/O and clock design. Co-development of RTL 
in the front-end has helped IXP2400 and IXP2800 to 
synergize and develop designs that are completely 
compatible from the microarchitecture level to the cycle-
accurate models on simulators. The sharing of knowledge 
and resources helped to avoid duplication of effort and 
kept the design cost low with beneficial affect on the time-
to-market schedule. 

Pre-Silicon Verification Effort 
Sausalito RTL verification was done very efficiently by 
following a robust methodology. The team completed the 
pre-silicon verification in approximately nine months after 
the first RTL model. Sharing verification across IXP2400 
and IXP2800 was very beneficial. Quality was never 
compromised in the verification effort. Results of the work 
are as follows: 

• No functional bug escaped pre-silicon 
verification after seven weeks of extensive 
testing on three platforms, namely, the Omaha 
validation platform, the Angel Island evaluation 
platform, and the IX/IMS testers.  

• Though the two projects IXP2400 and IXP2800 
used different simulators and validation 
platforms, the pre-defined methodology and 
guidelines allowed then to share the verification 
components seamlessly. 

• Using Linux machines saved several hundreds of 
thousands of dollars to the division, and it 
proved that risk-taking pays off. 

Clock Architecture 
A low clock skew well-balanced clock architecture was 
achieved through the methodology at the end of the 
IXP2400 design. The clock tuning also converged rapidly 
at the end. The silicon probing confirmed the simulated 
results. 

Hierarchical Flow and Methodology 
The high-end ASIC design flow that emerged from the 
IXP2400 design flow enabled rapid physical design 
convergence at the end of design. The time from RTL 
closure to the GDS2 database freeze for tapeout was less 
than one quarter. 

Using the hierarchical design methodology and flow 
described in this paper, the IXP2400 design team was able 
to implement and complete the chip design in 12 months.  
This represents a tremendous achievement, considering 
the complexity and performance level of the chip.  The 
design flow is further validated by a functional first 
silicon.  This proves that a high level of quality is possible 
with the TTM design flow. 

Transactor 
With this effective development strategy and the 
capability of VMOD, the IXP2400 Transactor project has 
been on schedule since the first external SDK release, 
which happened more than three quarters before the 
IXP2400 sample date. Moreover, architects successfully 
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completed performance analysis by developing reference 
applications and validating that IXP2400 meets the 
performance goals during the chip design phase by using 
Transactor. 

 

 
Figure 6: IXP2400 die plot 

CONCLUSION 
In an emerging and competitive environment of network 
processor solutions, it is imperative to keep the customers 
engaged continuously. This interaction starts for the 
design team with providing an accurate simulator months 
ahead of time to the actual functional silicon availability. It 
is also essential to keep the network processor 
development times on the scale of Moore’s law or face 
extinction. 

The network processor design teams have embraced the 
best-of-class practices to manage the unique design 
challenges and deliver the products in line with customer 
expectations. The IXP2400 design (Figure 6) was 
completed in four quarters from the Implementation Plan 
Approval (IPA), a goal set at the start of the project. The 
A0 post-silicon was obtained on schedule. After one 
quarter of extensive testing on three different platforms, 
no functional issues have been found. The first customer 
samples, based on A0 silicon, were shipped out one week 
ahead of the plan established at IPA.   
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