
Intel®

Technology
Journal

Network Processors

Volume 06 Issue 03 Published, August 15, 2002 ISSN 1535766X

Challenges and Methodologies for
Implementing High-Performance

Network Processors

A compiled version of all papers from this issue of the Intel Technology Journal can be found at:
http://developer.intel.com/technology/itj/index.htm

Paper8cover.qxd 8/9/02 11:43 AM Page 1

http://developer.intel.com/technology/itj/index.htm

Challenges and Methodologies for Implementing High-Performance Network Processors 83

 Challenges and Methodologies for Implementing High-

Performance Network Processors

Ram Bhamidipati, Ahmad Zaidi, Siva Makineni, Kah K. Low,
Robert Chen, Kin-Yip Liu, Jack Dahlgren

Intel Communications Group, Intel Corporation

Index words: network processors, reuse, verification, clock architecture, hierarchical flow, transactor, simulator

ABSTRACT

Moore’s law has been the guiding principle for
performance and transistor density improvements over the
years. While this is true, in the context of network
processor development, the challenge is multi-faceted to
keep the silicon development on the curve.

This paper describes the challenges for a network
processor implementation in each facet of design. The
network processor designs adopted the following
implementation techniques to manage the design
challenges and the Time-to-Market (TTM) schedule:

• Reuse of Intellectual Property (IP).

• Extensive functional validation.

• High-performance clock architecture and design.

• Streamlined hierarchical physical design flow.

• Efficient and cycle-accurate c-model for
performance simulation.

A case study of implementation on the IXP2400 design is
presented with the above strategies in detail.

The silicon results show that the IXP2400 is a successful
design following the stated methods.

INTRODUCTION
Network processors are the emerging class of chips that
offer Original Equipment Manufacturers’ (OEM) flexibility
in creating a wide range of applications. They are targeted
to replace expensive and inflexible fixed-function silicon
Application-Specific Integrated Circuits (ASIC). The
implementation of network processors has to form-fit to
the schedule needs of a telecommunication industry

moving at the Internet speed. At Intel, we chose the
architectural approach of providing a highly integrated
and highly programmable solution to customers. This
means a lot of functionality is packed into the silicon,
thereby increasing its complexity for implementation. In
addition to the functionality, the network processor has to
operate at the targeted line rates, often running multiple
tasks as demanded by the end-user applications. The
applications may range from basic L3 forwarding to
sophisticated algorithms that are more compute-intensive,
as in the case of creating firewalls and intrusion detection
services.

Network processors interface to a host of devices to
perform their functions: media/switch fabric, PCI for
control interface, DRAM for packet storage, Quad Data
Rate (QDR) as a fast memory for queues and table lookup,
and miscellaneous device support including Universal
Asynchronous Receiver/Transmitter (UART) and General
Purpose Input/Output (GPIO). A number of parallel
microengines work on the data packets executing a
specific microcode sequence downloaded into their
memories by the control processor. The microengines, the
control units, and I/O interfaces are connected via an
internal chassis bus, and data movement happens in an
efficient manner through arbitration schemes. This is akin
to a system-on-chip design.

Intel Technology Journal Vol. 6 Issue 3, 2002.

Challenges and Methodologies for Implementing High-Performance Network Processors 84

Figure 1: Constantly increasing processing power is
required even as the market requires shorter design

cycles and time-to-market

A number of challenges for implementation are already
evident. As the demand for performance scales up (Figure
1), the number of transistors increases with collateral
increases in power and physical design complexity. As an
example, the IXP2400 design on p859 packs ~60 million
transistors, which is comparable to a high-performance
IA32 processor. Further, to meet the performance goals,
the critical processing elements such as the microengines
and the XScale™ control processor are working at the
highest clock rate possible (600MHz in IXP2400). The
high-frequency operation requires custom design of
Arithmetic and Logic Unit (ALU) and memory elements.

Given the varied usage models in the field, extended
temperature range (-40deg.C to 85deg.C) is a Plan Of
Record (POR) for network processor implementation at
Intel. The power requirements are also stringent, with
applications ranging from fully enclosed boxes, as in
cellular base stations, to heat-sink solutions on high-
performance blades (line cards) in a rack system. These
requirements pose a significant challenge for reliability
and robustness of the design.

Since network processors have to interface to a lot of I/Os,
the result is complexity of package, I/O design, and board
design. The requirements on design may be more stringent
here in network processors than on a CPU, due to the
proprietary nature of designs from OEMs.

Functional verification of a network processor is also a
very challenging task due to the fact that it has several
interfaces (PCI, DRAM, QDR, slowport, media, switch
fabric, etc.) and supports several network protocols.
Several on-chip clock domains, both synchronous and
asynchronous, make the task even more complicated.

One of the essential deliverables of a network processor
design project is a simulator that models the functionality
of the network processor with execution-cycle-level
accuracy. To external customers and internal software
teams, this simulator enables application software
development and performance optimization long before
the network processor product becomes available in
silicon. To the internal design team, this simulator
facilitates conducting performance analysis and
architecture/microarchitecture studies. The unique nature
of network processors poses significant challenges and
imposes special requirements on the development of such
a simulator. The requirements for the simulator are best
illustrated by reviewing the architecture of network
processors and the complexity and paradigm of the
application development. The simulator must minimize the
application development complexity. Furthermore, due to
lack of network processor performance benchmarks, the
simulator and reference applications must become
available at least three quarters before silicon sample date.
This schedule enables the potential customers to evaluate
the capability of the network processor effectively, and
facilitates the committed customers to gain time-to-market
advantage by starting application development early. It
helps Intel to engage the customers with an architecture
before the silicon is available.

In a competitive environment of network processor silicon
solutions, Time-to-Market (TTM) becomes a compelling
factor for Original Equipment Manufacturers (OEMs) in
picking an architecture for product design. For silicon
providers, as the performance demand is increasing and
the transistor count is thereby increasing, the RTL to
GDS2 design cycle times are staying flat. One way to form-
fit the complexity of design into the same schedule is by
increasing the size of design teams. Studies show that this
leads to inefficiencies and increased cost of product
development beyond a point.

In response to these challenges, the network processor
design teams at Intel have focused on increasing
productivity and efficiency in design through reuse, co-
development, innovative methodologies, and streamlined
tool flows.

The following sections describe IXP2400 as a case study,
going into the details of each phase of the network
processor design from RTL to GDS2.

XScale™ is a trademark of Intel Corporation or its
subsidiaries in the United States and other countries.

Intel Technology Journal Vol. 6 Issue 3, 2002.

Challenges and Methodologies for Implementing High-Performance Network Processors 85

IXP2400 DESIGN: A CASE STUDY

Reuse
The strategy for front-end RTL development was co-
development with IXP2800 and reuse of design modules
from an Intellectual Property (IP) repository. The design
modules for RTL coding were partitioned between
IXP2400 and IXP2800 at the beginning of the project
execution. The originating project that developed a
functional block assigned primary logic owners who are
completely responsible for functional correctness. The
receiving project assigned secondary owners who are
responsible for physical implementation at their end. This
co-development was managed well through good
interaction at engineering-peer-to-engineering-peer level
and between management at the schedule level. Project-
specific sub-modules were clearly identified (e.g., reset
module). For these sub-modules, a common interface was
worked out ahead of time to make it an easily swappable
block of code. The least common denomination of memory
elements in size and usage was also worked out in this
manner. High-performance custom datapath blocks in the
microengine were isolated from synthesizable blocks with
clear interface partitioning to allow parallel development. It
is to be noted here that the IXP2400 and IXP2800 have
different process and performance goals. Therefore, the
sharing is limited to RTL code.

A number of other functional blocks and sub-blocks have
been reused from an IP repository. These include the PCI
core, Universal Asynchronous Receiver/Transmitter
(UART), XScale™ core (Elkhart) and Double Data Rate
(DDR) I/O as shown in Figure 2.

Several IP were harvested for the physical implementation
for reuse. For the I/O design, good inventory of IP was
available from chipset groups for DDR I/O and a basic I/O
buffer design for all the others: Media Switch Fabric
(MSF), PCI, and miscellaneous I/O. Quad Data Rate (QDR)
I/O was generated by modifying the DDR I/O design.
Much of the I/O effort then was focused on integrating
the I/O blocks for the chip floorplan and for doing signal
integrity checks for the board reference designs.

The analog high-frequency Phase Locked Loop (PLL)
design was imported from the chipset group and tuned
extensively to IXP2400 requirements.

The basic cells for the SRAM memory elements and the
SRAM architecture were reused from a CPU group. This
cut down the development time to two quarters.

Figure 2: The IXP2400 design is a mix of reuse and co-
development

Functional Verification
This section describes some of the methodologies the
team adopted to successfully complete verification of the
IXP2400 network processor.

Verification of the IXP2400 started with choosing the right
tools and verification platform, and defining the
verification methodology. The team evaluated several
alternatives and chose Cadence’s* NCSIM for logic
simulator, Verisity’s* SPECMAN for test bench
automation, X86 Linux platforms for computing servers,
Debussy* waveform viewer for debug, and Denali*
memory models. A clear methodology was defined and
documented with two main goals :

1) The primary goal was to make sure that A0
silicon had adequate functionality that enabled
the team to build a system-level environment and
run software.

2) The secondary goal was to enable customer
sampling on the A-dash stepping.

An extensive upfront methodology was documented with
various milestones and exit criteria for each of these
milestones. This methodology document defined the rules
and guidelines to be followed while developing the
verification components to make them extendable,
expandable, and readily usable as an IP by another project.
IXP2400 and IXP2800 projects used this methodology and

Intel Technology Journal Vol. 6 Issue 3, 2002.

Challenges and Methodologies for Implementing High-Performance Network Processors 86

seamlessly shared the verification components. Figure 3 shows the validation view of the Sausalito architecture.

IXP2400
Chip& Gasket

RTL

RTL

devices that
connect to GPIO,BFM

uEngine
RTL

SRAM
RTL

QDR
Memory Model

DRAM
RTL

UTOPIA, POS, CSIX

U1, U2, U3, POS2

BFM

CPPSlaveBFM

BFM
Gasket RTL

CAM

SHAC
APBM
BFM

CPP bus

BFM

Model

U1, U2, U3, POS2

BFM

CPPSlaveBFM

APBM
BFM

Figure 3: Validation view of IXP2400 architecture

Following are some of the salient features of the IXP2400
verification methodology.

1. Testing design at multiple levels of integration,
namely, block level, full-chip, and system levels:
System level simulation puts together an IXP2400
full-chip RTL model with the ecosystem
surrounding the chip in some real-life
applications. The intent of system-level
simulation is to make sure that the chip is
compatible with ECO system components such
as framers, and compliant with industry standard
protocols such as UTOPIA and POS-PHY.

2. Monitor-Based Testing (MBT): The real power of
SPECMAN lies in its built-in random generator,
and this power is used during test plan
implementation. Tests are developed in a three-
phase approach. In phase 1, simple, directed tests
are written to cover the breadth of design. In the
second phase, the random power of SPECMAN
is unleashed to generate interesting test cases.
For each of the test cases in the test plan,
monitors are written to make sure that the test
case is covered. Hence, all the test cases whose
monitors got triggered during this random run are
checked off. The coverage report is analyzed to
identify the test cases that are not covered.
These uncovered test cases are the focus of the
third phase, in which directed tests are written to
cover them.

3. Random testing: To increase confidence in the
model, SPECMAN’s random generator was put to
use. A concurrent random test environment was

built to generate random transactions on a bus
with multiple masters and slaves. This
environment is highly configurable to choose
specific master(s), slave(s), and type(s) of
transactions.

4. Gate-level verification: This was used to weed
out initialization deficiencies and synthesis bugs.

5. Error checking that uses three methods: 1)
extensive score-boarding techniques were used
in packet generators; shadow memory techniques
were used for memory data checks during and at
the end of each test, 2) for microengine
verification, a reference model was written in C
and was used to validate the RTL model, and 3)
protocol checkers were used to verify the
behavior of the design for compliance with
certain protocols.

6. Structural and functional coverage monitoring
techniques.

7. Automation scripts and web-based regression
methodology: these used netbatch tools to
balance and distribute jobs across multiple
servers.

8. Complete debug: the verification team took a goal
to debug the RTL failures in order to determine
the root cause. In several cases, the team not
only root-caused the failure but also identified
the fix. This enabled the team to gain extensive
knowledge of the design, which helped during
later stages of per-silicon debug and also helping
post-silicon debug.

Intel Technology Journal Vol. 6 Issue 3, 2002.

Challenges and Methodologies for Implementing High-Performance Network Processors 87

9. Rigorous quality and progress measurement
indicators: various indicators were developed to
measure the quality and progress. The two kinds
of indicators used were 1) trend and 2) snapshot.
Trends were useful for determining progress
against the plan over several weeks. Snapshots
were used to get the status at a single point in
time and were used to point out problems in a
specific block or area of testing.

XScale™ is a trademark of Intel Corporation or its
subsidiaries in the United States and other countries.

*Other brands and names are the property of their
respective owners.

IXP2400 CLOCK ARCHITECTURE
OVERVIEW
To support operations of various memory interfaces,
communication interfaces, and internal computing
hardware, IXP2400 has 16 clock domains, not to include
various test clocks. The highest clock rate is used by a
microengine and the on-die XScale™ core, up to 720MHz,
to generate high-computing performance for packet
processing. The global communication buses for major
internal hardware units operate up to 360MHz. To assist
sending and receiving data to external memory devices,
including both DRAMs and SRAMs, 1X, 2X and 4X
clocks are generated for the memory device controller and
IO devices. IXP2400 also has four independent media
interface clock regions, operating from 25MHz to 125MHz.
The clock rates for communication interfaces and memo ry
interfaces are all programmed through control registers.
For boot up and host processor communications, IXP2400
has PCI and slow port interfaces running up to 66MHz and
60MHz, respectively.

To support all these clock domains, IXP2400 has a total of
5 Phase Locked Loops (PLLs). Four of them are for
generating independent asynchronous clocks for the four
media communication interfaces, and the remaining one is
for generating all internal clocks for packet processing and
all memory interfaces (Figure 4). With various clock
domains, data crossing is done through extensive use of a
stepping stone control scheme to ensure safe data
crossing, in the presence of higher clock skew between
different clock domains. Stepping stone control is also
enforced in test mo de between clock domains that are
normally asynchronous in nature.

The clocking in IXP2400 has numerous features to support
testing and debug. A debug counter that counts up to 67
million cycles is incorporated to support a count-down
and clock-stopping function, so that the device can stop
at a particular cycle and SCAN out of internal states can
begin. The clock distribution system supports bypassing
of external SYS_CLK, SCAN clocks, and JTAG clock.

IXP2400 Clock Design
The IXP2400 clock design can be grouped into two parts:
the clock generation and the clock distribution.

The clock generation consists of a PLL and a clock
divider. The PLL is a leveraged IP that we adapted to fit
into the IXP2400 area constraint. The divider was custom
built by the IXP2400 team to meet the more stringent
requirement of low latency by the IXP2400 chip. Lower
latency means lower full-chip clock skew. The reduction
of the full-chip clock skew from the divider is estimated at
60ps. To design a fast divider, non-critical paths were
carefully designed to still meet their timing yet, more
importantly, have minimum impact on or even help speed
up critical paths. Logics were combined innovatively and
carefully optimized using custom techniques. As a result,
the divider clocks are generated after just one latch delay
from receiving the source clock.

Figure 4: The IXP 2400 clocking scheme

Clock balancing within the divider was made more
challenging; given the quest for low latency, more design
efforts on balancing were spent after low latency was
achieved. Layout was also carefully scrutinized for
balancing. A local pre-divide grid was used to reduce RC.
Delay elements were added to allow further fine-tuning of
the clocks, if necessary. The frequency range of the
clocks on IXP2400 is wide; thus a high-ratio divider was
designed. An important part of the divider is the error-

Intel Technology Journal Vol. 6 Issue 3, 2002.

Challenges and Methodologies for Implementing High-Performance Network Processors 88

correction circuit, which combats noise and ensures clock
alignment. The clock dividers are also programmable.

The clock network design challenges were evident from
the beginning. The number of clocks in a network
processor chip is high compared with general-purpose
microprocessors. In addition, the IXP2400 has a large die
size; so, inherently, the clock skew would be large if not
carefully designed. Low power was another consideration.
Tight schedule was another challenge, and quick turn-
around time was another goal. These were some of the
challenges in designing the IXP2400 full-chip clock
network.

For low-power consideration, a balance tree clock network
style was selected. It uses a fixed route to stabilize RC and
reduce iteration impact to full-chip layout. The large
number of clock drivers is grouped into clock station
macrocells. Layouts were done with easy programming in
mind. Most of the clock stations were designed to drive a
fixed load to ease clock tuning. At the chip level, all
clocks were routed with shielding. The full-chip clock
network RC was extracted and simulated in SPICE. Scripts
and automation were developed to quickly tune the clock
networks once the block-level clock data are in.
Eventually, towards tape-out, the full-chip clock network
tuning turn-around time is just one day. At the block level,
a pre-grid clock scheme was used to reduce clock skew.
RC extraction data were fed back from the block to the full
chip for top-level clock tuning. Block-level-clock tuning
was automated for smaller blocks and carried out by hand
for large blocks and I/Os. SPICE was the primary
simulation engine for accuracy of the results. Place and
route blocks were tuned by a clock tree synthesis tool for
the last two stages of clock networks just before reaching
the flops. Clocks lines were plotted and reviewed by the
clock owner and the individual block designers.

XScale™ is a trademark of Intel Corporation or its
subsidiaries in the United States and other countries.

IXP2400 HIERARCHICAL DESIGN
METHODOLOGY AND FLOW
The primary requirement on the design flow is to enable
short Time-to-Market (TTM). Therefore, it is imperative to
employ a high level of design automation to increase
productivity. We employed the following basic strategies
to help achieve the TTM goal:

• Top-down-driven hierarchical design flow.
• Cell-based methodology.
• Streamlined custom circuit-design flow.

We began by performing careful floorplanning at the chip
level to obtain an accurate wire model of major/critical
signals/busses, block sizes/placements, and location of
the block-level pins. A full-chip timing budget was then
done to allocate timing constraints to the blocks. The
block-level constraints were then passed on to the block
designers, who then performed an initial design and
provided the feedback to the full-chip designer. By
performing upfront planning and getting early bottom-up
feedback, we reduced the number of iterations needed to
converge on the final design goals.

Secondly, through the use of cell-based methodology with
only static CMOS logic, we were able to take advantage of
the industry standard Application-Specific Integrated
Circuits (ASIC) design tools, namely, logic synthesis and
automatic place and route tools, which offer a relatively
fast design cycle. These tools were used on most of the
blocks, with the exception of the timing critical datapath
blocks of the microengines, memory arrays, and IO pads.
In addition, we were careful to ensure that flip-flops were
used at all block boundaries to minimize inter-block
interactions.

The key enabler for achieving high productivity in our
custom design flow is a tool suite from MicroMagic (now
part of Juniper* Networks). Coupled with the cell-based
design methodology, the tool allowed us to specify the
relative placements of the cells while composing the
schematics of the datapath blocks. The tool automatically
generates the block layouts with placed cells. Timing
analysis is then done with global routings to obtain the
performance of the physical design. The placements of
the cells can then be fine-tuned to improve timing where
necessary. Once the timing goal is met, an automatic
detailed router is used to complete the layout. In this
manner, the datapath block layouts were completed with
less than one-third the amount of effort compared to full
custom-design methodology. Likewise, the memory arrays
were constructed through the use of MicroMagic tools,
which automatically assemble the array layouts based on a
set of high-level commands. Furthermore, the command
scripts were parameterized so that arrays of different sizes
(within a pre-defined range) could be compiled
automatically with minimal efforts.

Last, but not least, the design project was managed using
a structured design flow with a series of discrete
milestones. The flow diagram in Figure 5 depicts the high-
level view of the design flow.

*Other brands and names are the property of their
respective owners.

Intel Technology Journal Vol. 6 Issue 3, 2002.

Challenges and Methodologies for Implementing High-Performance Network Processors 89

Figure 5: The IXP2400 team used this flow to rapidly

converge on the final implementation while
maintaining control of the data

IXP2400 Design-for-Test Methodology
IXP2400 is a complex System on a Chip (SOC) design with
more than 300 embedded arrays and 88 scan chains
encompassing 120K flip-flops spanning across 14 different
clocks running and configurable from 33 to 600MHz. The
complexity of the system requires a carefully planned
Design For Test (DFT) methodology to enable
manufacturing and silicon debug. To achieve high test
coverage, full-scan design methodology is used
throughout the entire chip. Embedded memory arrays are
tested using either memory built-in self-tests (MemBIST)
or scan-collars. In scan-collared arrays, scan flops are
placed on both the input and output stages and are used
to control and monitor the arrays. All of the scan-collared
arrays are part of the 88 scan chains. Also, boundary scan
is implemented on the IO pads to facilitate system-level
testing.

To assist in silicon debug, we included a novel scan-
debug feature on the chip. This feature allows the chip to
run at full speed from reset and stop at a user-defined
cycle. The internal state of the machine, i.e., the content
of each scanned register, can then be shifted out through
the scan chains.

Network Processor Cycle-Accurate Simulator
This section describes the challenges, the requirements,
and the successful development strategy and tools that
the IXP2400 development team employed.

Architecturally, a network processor consists of clusters
of packet processors, co-processors with specific
functions, on-chip memory, various kinds of memory and

bus interface controllers, and many mechanisms that
provide fast communication and signaling among these
hardware elements, and a general-purpose CPU, all on a
single chip. In the case of IXP2400, the packet processors
are called microengines. A microengine is a multi-threaded
processor that excels in processing packets at line rate.
Each IXP2400 microengine supports up to eight threads of
execution. Thread switching is controlled by software and
poses zero cycle penalty. IXP2400 contains integrated
SRAM and DRAM controllers. Moreover, IXP2400 offers
hardware acceleration for managing queues and First In
First Out (FIFO) rings, and supports atomic operations for
the SRAM and on-chip memory address spaces.
Furthermore, IXP2400 provides highly flexible network
media and switch fabric interfaces for receiving and
transmitting packets.

From the user’s perspective, application development for
network processors is an exercise of real-time, multi-
threaded, and multi-processor programming at the same
time. The performance of the application must ensure that
the throughput of packet processing exceeds the desired
line rate so that packets do not get dropped. In order to
create optimized and efficient applications, developers
must account for the latency and sequence of all the
transactions, as well as the interactions among the various
execution threads and hardware units. As a result, the
simulator must offer both functional and cycle accuracy.
Furthermore, the simulator must monitor a rich list of
performance statistics and all the transactions every clock
cycle, and must enable the developers to visualize them
through an effective Graphical User Interface (GUI).

For the Intel IXP family of network processor products,
the simulator is called Transactor, and the GUI tool is
called Workbench. Workbench offers the single GUI for
code development using assembly or microengine C
language, for running simulations to debug and
performance-tune applications, and for debugging with
the real network processor hardware.

The complexity of network processors, the requirement of
100% cycle accuracy, and the fact that external Transactor
releases begin during the early phase of the project all
pose significant challenges to the Transactor development
team. In addition, the team must achieve excellent
development efficiency and quality.

The development strategy that the IXP2400 project
employed is based on an internal tool called VMOD.
Conceptually, VMOD accepts a logic design at the RTL
level and generates the corresponding cycle-accurate C++
model, i.e., Transactor. Moreover, this C++ model
supports an API for interfacing Transactor with the
workbench. This API relays user commands to Transactor
and facilitates communication of model states,

Intel Technology Journal Vol. 6 Issue 3, 2002.

Challenges and Methodologies for Implementing High-Performance Network Processors 90

performance statistics, and status of transactions under
simulation between Transactor and Workbench.

RTL code presents the functional and cycle-count
behavior of a logic design to VMOD. However, RTL code
describes only the low-level hardware and does not
convey model states at the architecture level. For instance,
Transactor users operate with architectural registers, but a
register in RTL may be a group of flip-flops that are
individually addressed through signal names with long
hierarchies. In addition, the RTL code of a logic design
does not include performance statistics and does not
monitor transactions that execute on top of the hardware
that the very RTL code models.

In order to enable Transactor to present architectural
states and performance statistics to the users, and to track
all the simulated transactions, VMOD accepts C++ code in
addition to RTL. This C++ code can read and write
individual RTL signals and runs in lock-step with the
simulation of the RTL. During simulation, this C++ code
collects performance statistics and tracks all the
transactions by accessing the relevant RTL signals.
Moreover, when the Transactor user wants to access an
architectural state, this C++ code translates the mapping
of the requested architectural state to the actual collection
of RTL signals that make up the architectural state.

Within the IXP2400 design team, the Transactor team
owns the development of the Transactor, and the logic
design team owns the development of the RTL model. The
Transactor team develops the C++ code for all the
architectural states, performance statistics, and tracking of
transactions. In addition, the Transactor team inputs both
the C++ code and the RTL of the logic design into VMOD
for Transactor generation. In addition, to ensure excellent
quality, the Transactor team builds a thorough regression
suite for validating Transactor.

RESULTS

Reuse
Reuse has been a tremendous win overall for the IXP
design program. In particular for IXP2400, it cut down the
development times for critical elements of design, for
example, in I/O and clock design. Co-development of RTL
in the front-end has helped IXP2400 and IXP2800 to
synergize and develop designs that are completely
compatible from the microarchitecture level to the cycle-
accurate models on simulators. The sharing of knowledge
and resources helped to avoid duplication of effort and
kept the design cost low with beneficial affect on the time-
to-market schedule.

Pre-Silicon Verification Effort
Sausalito RTL verification was done very efficiently by
following a robust methodology. The team completed the
pre-silicon verification in approximately nine months after
the first RTL model. Sharing verification across IXP2400
and IXP2800 was very beneficial. Quality was never
compromised in the verification effort. Results of the work
are as follows:

• No functional bug escaped pre-silicon
verification after seven weeks of extensive
testing on three platforms, namely, the Omaha
validation platform, the Angel Island evaluation
platform, and the IX/IMS testers.

• Though the two projects IXP2400 and IXP2800
used different simulators and validation
platforms, the pre-defined methodology and
guidelines allowed then to share the verification
components seamlessly.

• Using Linux machines saved several hundreds of
thousands of dollars to the division, and it
proved that risk-taking pays off.

Clock Architecture
A low clock skew well-balanced clock architecture was
achieved through the methodology at the end of the
IXP2400 design. The clock tuning also converged rapidly
at the end. The silicon probing confirmed the simulated
results.

Hierarchical Flow and Methodology
The high-end ASIC design flow that emerged from the
IXP2400 design flow enabled rapid physical design
convergence at the end of design. The time from RTL
closure to the GDS2 database freeze for tapeout was less
than one quarter.

Using the hierarchical design methodology and flow
described in this paper, the IXP2400 design team was able
to implement and complete the chip design in 12 months.
This represents a tremendous achievement, considering
the complexity and performance level of the chip. The
design flow is further validated by a functional first
silicon. This proves that a high level of quality is possible
with the TTM design flow.

Transactor
With this effective development strategy and the
capability of VMOD, the IXP2400 Transactor project has
been on schedule since the first external SDK release,
which happened more than three quarters before the
IXP2400 sample date. Moreover, architects successfully

Intel Technology Journal Vol. 6 Issue 3, 2002.

Challenges and Methodologies for Implementing High-Performance Network Processors 91

completed performance analysis by developing reference
applications and validating that IXP2400 meets the
performance goals during the chip design phase by using
Transactor.

Figure 6: IXP2400 die plot

CONCLUSION
In an emerging and competitive environment of network
processor solutions, it is imperative to keep the customers
engaged continuously. This interaction starts for the
design team with providing an accurate simulator months
ahead of time to the actual functional silicon availability. It
is also essential to keep the network processor
development times on the scale of Moore’s law or face
extinction.

The network processor design teams have embraced the
best-of-class practices to manage the unique design
challenges and deliver the products in line with customer
expectations. The IXP2400 design (Figure 6) was
completed in four quarters from the Implementation Plan
Approval (IPA), a goal set at the start of the project. The
A0 post-silicon was obtained on schedule. After one
quarter of extensive testing on three different platforms,
no functional issues have been found. The first customer
samples, based on A0 silicon, were shipped out one week
ahead of the plan established at IPA.

ACKNOWLEDGMENTS
The authors acknowledge the contributions of Suri
Medapati, Tim W. Chan, Jianhui Huang, and Kamal
Koshy. The authors also acknowledge the contributions
of Bill Wheeler, Chris Clark and Tim Fennell in the
deployment of VMOD tool for IXP2400.

REFERENCES
 [1] C. Narad and L. Huston, “Introduction to Network

Processors,” Hotchips-12 Presentation, August 2000.

[2] S. Batzer, et. al, “Modeling the Cost Avoidance
Potential of a Structured Approach to IP Reuse at
Intel,” DTTC papers, July 2002.

AUTHORS’ BIOGRAPHIES
Ram Bhamidipati joined Intel in 1989, after completing his
M.S. in Electrical Engineering from N.C.A.&T. State
University. He has worked on processor design groups for
the development of i486™, Pentium® II, and Itanium®
processors. He holds two US patents in design. Currently,
he is managing the back-end design of the IXP2400
network processor. His e-mail address is
sriram.bhamidipati@intel.com.

Ahmad Zaidi joined Intel in 1987, after comp leting his
Master of Electrical Engineering degree from Virginia Tech
University. Ahmad is currently Director of Silicon
Engineering for NPD-San Jose, focusing on architecture,
design, program management, and manufacturing of
network processors for the Access and Edge market
segments. His prior assignments include engineering
management positions on the Itanium Processor, and
engineering positions in the i386™, i486, and Pentium®
microprocessor projects. Ahmad holds nine US patents in
microprocessor design and architecture. His e-mail
address is ahmad.zaidi@intel.com.

Siva Makineni joined Intel in 1992, after completing his
Master of Engineering (E.E.) degree from Worcester
Polytechnic Institute in Worcester, Massachusetts. Prior
to joining the IXP2400 team as pre-silicon verification
manager, Siva held several engineering and management
positions in Itanium, Pentium, and 486SL projects. Most
recently, he designed floating point arithmetic units on the
Itanium processor and managed the SIMD floating point
implementation team. Siva holds ten US patents in
floating point and integer arithmetic. His technical
interests include high-speed floating point architecture
and design, computer arithmetic, and developing effective
verification strategies. His e-mail address is
siva.makineni@intel.com.

Intel Technology Journal Vol. 6 Issue 3, 2002.

Challenges and Methodologies for Implementing High-Performance Network Processors 92

Kah K. Low is currently the design center manager of
Intel’s Malaysia Network Development Center, where he
leads the development of next -generation network
processors. Previously, he was the global design manager
in the IXP2400 design project. He joined Intel in 1995 to
work on the Itanium design project, where he managed the
circuit design automation group. Prior to Intel, Kah K. was
with Motorola, Inc. from 1989-1995, where he worked on
statistical design, device modeling/characterization, CAD,
digital signal processors, and where he served as a project
manager in SEMATECH’s phase-shifting mask program.
He holds three US patents and received his B.S. degree
from the University of Massachusetts, and his M.S. and
Ph.D. degrees from Carnegie Mellon University, all in
Electrical Engineering. His technical interests include
network processor design, VLSI design methodology,
CAD tools, and communication networks. His e-mail
address is kah.k.low@intel.com.

Robert Chen received his Ph.D. degree in Electrical
Engineering from the University of Notre Dame in 1993.
Since then, he has worked in various areas of IC design:
library, SRAM, register files, TLB and CAM, low power,
clocks, place and route, and logic design. He received
“Top Gun Award” from Sun Microsystems, Inc. in 1995,
and “IA-64 Processor Division Award” from Intel in 2000
for his work on McKinley power reduction. Currently,
Robert is working on the clock design for the next
generation of IXP2400. His e-mail is
robert.chen@intel.com.

Kin-Yip Liu joined Intel in 1990, after completing his
Master of Engineering (E.E.), Bachelor of Science (E.E.),
and Bachelor of Arts (Economics) degrees from Cornell
University. Kin-Yip now co-manages the NPD NPBU
Architecture team at San Jose, focusing on network
processors for the Access and Edge market segments. His
prior assignments include engineering and management
positions in the Itanium Product Family architecture and
firmware teams and in the 386SL and 486SL
microprocessor projects. Kin-Yip holds four US patents in
microprocessor architecture. His technical interests
include network processing, computer architecture, and
simulator development. His e-mail address is kin-
yip.liu@intel.com.

Jack Dahlgren joined Intel in 1997, after ten years in the
architecture and construction management industries. He
has provided project control services on several projects
including development of Itanium and the Mobile Intel®
Pentium® III Processor. His educational background
includes Master’s degrees in Architecture and Civil
Engineering from the University of California at Berkeley.
His e-mail address is jack.dahlgren@intel.com.

i486™ and i386™ are trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Pentium® II, Itanium®, and Mobile Intel® Pentium® III
Processor are registered trademarks of Intel Corporation or
its subsidiaries in the United States and other countries.

Copyright © Intel Corporation 2002. This publication was
downloaded from http://developer.intel.com/

Legal notices at
http://developer.intel.com/sites/developer/tradmarx.htm.

Copyright © 2002, Intel Corporation. All rights reserved.
Intel is a trademark or registered trademark of Intel Corporation or its subsidiaries in the United States and other countries.
For a complete listing of trademark information visit: www.intel.com/sites/corporate/tradmarx.htm

For further information visit:

developer.intel.com/technology/itj/index.htm

Cover.qxd 8/2/02 2:31 PM Page 3

http://developer.intel.com/technology/itj/index.htm

	ITJ_Vol06_Issue03_REV.pdf
	1_Adiletta_NextGen_Web3QA1.pdf
	ABSTRACT
	INTRODUCTION
	IXP2800 SYSTEM EXAMPLES
	Metro-LAN 10 Gigabit Ethernet Switching or OC-192 Packet over SONET Switching Blade

	10GB/S MULTI-SERVICE SWITCH BLADE
	OC-48 (4 X OC-12 OR 16 X OC-3) SWITCHING BLADE
	THE IXP2800 MICROARCHITECTURE
	The Media-Switch-Fabric Interface
	The IXP Chassis

	THE MICROENGINE CLUSTERS
	The SRAM cluster
	The DRAM Cluster
	The Cryptography Unit
	The Hash Unit
	The Scratch Unit
	The Xscale™ Processor
	The PCI Unit

	THE IXP2XXX MICROENGINE
	
	Registers
	Instructions
	CAM
	Event Signals

	CHALLENGES AT 10GB/S
	DISCUSSION
	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES

	3_ADIL~1.PDF
	INTRODUCTION
	CHALLENGES/SOLUTIONS
	Context Pipe Stage
	Functional Pipe Stage
	Mixed Pipelines
	E
	Elasticity Buffers

	Synch Section Signaling and Critical Signaling
	Synch Sections
	Critical Sections
	Exclusive Modification Privileges between MEs

	Folding – Exclusive Modification Privileges between threads in an ME
	Pool of Threads

	INGRESS: IP PACKETS TO CSIX
	Reassembly Pointer Stage (RPTR)
	Reassembly State Update Stage (RUPD)
	Packet Processing (PPR)
	Metering 1 and Metering 2
	Congestion Avoidance
	RED
	WRED

	Statistics
	Transmit Scheduler
	Queue Manager
	Transmit 1 and Transmit 2

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES

	1_ADIL~3.PDF
	ABSTRACT
	INTRODUCTION
	IXP2800 SYSTEM EXAMPLES
	Metro-LAN 10 Gigabit Ethernet Switching or OC-192 Packet over SONET Switching Blade

	10GB/S MULTI-SERVICE SWITCH BLADE
	OC-48 (4 X OC-12 OR 16 X OC-3) SWITCHING BLADE
	THE IXP2800 MICROARCHITECTURE
	The Media-Switch-Fabric Interface
	The IXP Chassis

	THE MICROENGINE CLUSTERS
	The SRAM cluster
	The DRAM Cluster
	The Cryptography Unit
	The Hash Unit
	The Scratch Unit
	The XScale™ Processor
	The PCI Unit

	THE IXP2XXX MICROENGINE
	
	Registers
	Instructions
	CAM
	Event Signals

	CHALLENGES AT 10GB/S
	DISCUSSION
	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES

